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Abstract: The primary aim of the present article is to determine some suffi-
cient coefficient conditions for normalized generalized Wright functions belonging
to certain families of analytic univalent functions in conic regions. We also ob-
tain coefficient conditions for inclusion relations between these subclasses under
a convolution operator. Finally, we introduce an integral operator involving with
normalized generalized Wright functions and obtain some sufficient coefficient con-
ditions for this integral operator belonging to families of univalent functions in
conic regions.
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1. Introduction
Let A represent the family of function f(z) of the form

f(z) = z +
∞∑
n=2

anz
n, an ∈ C, (1.1)
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which are analytic in the open unit disk U = {z : |z| < 1} with normalization
condition f(0) = f ′(0)− 1 = 0.

Further, S stand the subclass of A consisting of functions of the form (1.1)
which are also univalent in U.

In 1995, Dixit and Pal [5] introduced the class Rτ (A,B) consisting of functions
f(z) of the form (1.1) if it satisfies the condition∣∣∣∣ f ′(z)− 1

(A−B)τ −B (f ′(z)− 1)

∣∣∣∣ < 1,

where z ∈ U, τ ∈ C/ {0}, −1 ≤ B < A ≤ 1.
Goodman ([10, 11]) (see also ([6, 8, 13, 16, 26, 27]) introduced uniformly convex
and uniformly starlike functions in the following way

A function f(z) is said to be uniformly convex in U, if f(z) is convex and has
the property that for every circular arc η contained in U with centre ρ also in U,
the arc f(η) is convex. A necessary and sufficient condition for a function f(z) ∈ A
to be uniformly convex in U is that

ℜ
{
1 + z

f ′′(z)

f ′(z)

}
≥

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣
where z ∈ U. The class of all functions satisfying the above condition is denoted
by UCV .

Similarly, a function f(z) is said to be uniformly starlike in U, if f(z) is starlike
in U and has the property that for every circular arc η contained in U with centre
ρ also in U, the arc f(η) is starlike with respect to f(ρ). A starlike function f(z)
of the form (1.1) is said to be uniformly starlike in U, if and only if

ℜ
{
f(z)− f(ρ)

(z − ρ)f ′(z)

}
> 0, z ∈ U, z ̸= ρ.

The class of all functions satisfying the above condition is denoted by UST .
Kanas and Wisniowska ([14, 15]) generalized the families of uniformly convex

functions and uniformly starlike functions in to k− uniformly convex functions and
k− uniformly starlike functions, denoted by k − UCV and k − ST , respectively,
and defined as

A function f(z) of the form (1.1) is said to be k− uniformly convex functions
if it satisfies the analytic criteria

ℜ
{
1 + z

f ′′(z)

f ′(z)

}
≥ k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣
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where 0 ≤ k < ∞, z ∈ U.
Similarly, a function f(z) of the form (1.1) is said to be k− uniformly starlike

functions if it satisfies the analytic condition

ℜ
{
zf ′(z)

f(z)

}
≥ k

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣
where 0 ≤ k < ∞, z ∈ U.

Further, these results were generalized by Bharti et al. [4].
A function f(z) of the form (1.1) is said to be in the class S∗

ϵ if it satisfy the
condition ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < ϵ,

where ϵ > 0, z ∈ U.
Similarly, a function f(z) of the form (1.1) is said to be in the class Cϵ if it

satisfy the analytic criteria ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < ϵ,

where ϵ > 0, z ∈ U.
The classes S∗

ϵ and Cϵ were studied earlier by Gangadharan et al. [8].
In 1933 Wright [29] introduced the following function known as Wright function

Wα,β(z) =
∞∑
n=0

zn

n!Γ (αn+ β)
(1.2)

where α > −1, β ∈ C.
Wright [29] also proved that this function is an entire function for α > −1.

The recent applications of Wright function in univalent function theory is given in
the work of Al-Hawary et al. [2], Joshi et al. [12] and Mustafa and Altintas [21].
Shahed and Salem [7] generalized Wright function Wα,β(z) into W γ,δ

α,β(z) which is
defined as

W γ,δ
α,β(z) =

∞∑
n=0

(γ)n
(δ)n

zn

n!Γ (αn+ β)
(1.3)

where α > −1, γ, δ, β ∈ C and (γ)n is a Pochhammer symbol and defined as

(γ)n =
Γ(γ + n)

Γ(γ)
:=

{
1, n = 0
γ (γ + 1) · · · (γ + n− 1), n ∈ N (1.4)
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and symbol Γ is the Gamma function. It is easy to verify that the function W γ, δ
α,β (z)

is an entire function of order 1
1+α

.
Porwal and Magesh [23] (see also [25]) introduced normalized generalizedWright

function as

Wγ,δ
α,β(z) = Γ(β)zW γ, δ

α,δ (z)

=
∞∑
n=0

(γ)n
(δ)n

Γ(β)

Γ (αn+ β)

zn+1

n!

= z +
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

zn

(n− 1)!
. (1.5)

Now, we recall the definition of Hadamard product (or Convolution) of two function
represented in Taylor series form. For deep study on Hadamard product one may
refer to recent work of Mulyava et al. [25]. The Hadamard product (or Convolution)
of two functions f(z) of the form (1.1) and g(z) of the form

g(z) = z +
∞∑
n=2

bnz
n (1.6)

is given by the power series

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n. (1.7)

Now, we introduce the convolution operator

I(γ, δ, α, β)f(z) = Wγ,δ
α,β(z) ∗ f(z)

= z +
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

zn. (1.8)

The special functions play an important role in geometric function theory. Sev-
eral researchers give some nice applications of hypergeometric function [27], Bessel
functions [17], Mittag-leffler function [1, 3] and Wright function [21] in geometric
function theory and establishes a co-relation between special functions and uni-
valent functions. Motivated by above mentioned work and results on mapping
properties of some special functions on univalent functions ([9, 19, 20, 24, 7]) we
obtain some sufficient coefficient conditions of normalized generalized Wright func-
tions belonging to certain classes of univalent functions in conic regions. We also
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find sufficient conditions for inclusion relations between various subclasses of uni-
valent functions under a convolution operator. Finally, we introduce an integral
operator involving with normalized Wright function.

2. Preliminary Results
To prove our main results we shall require the following lemmas.

Lemma 2.1. ([5]) If f ∈ Rτ (A,B) is of the form (1.1) then

|an| ≤ (A−B)
|τ |
n
, n ≥ 2.

The result is sharp.

Lemma 2.2. [15, 28] Let f(z) ∈ A be of the form (1.1). If for some k(0 ≤ k < ∞)
the following inequality

∞∑
n=2

{n+ (n− 1)k} |an| ≤ 1, (2.1)

is satisfied then f ∈ k − ST .

Lemma 2.3. [14, 28] Let f(z) ∈ A be of the form (1.1). If for some k(0 ≤ k < ∞)
the following inequality

∞∑
n=2

n {n(k + 1)− k} |an| ≤ 1, (2.2)

is satisfied then f ∈ k − UCV .

Lemma 2.4. ([14, 28]) Let f(z) ∈ A be of the form (1.1). If for some k(0 ≤ k <
∞) the following inequality

∞∑
n=2

n(n− 1) |an| ≤
1

k + 2
, (2.3)

holds true then f ∈ k − UCV .
The result is sharp.

Lemma 2.5. [8] Let f ∈ A be of the form (1.1). If for some ϵ > 0 the inequality

∞∑
n=2

(ϵ+ n− 1) |an| ≤ ϵ, (2.4)
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is satisfied then f ∈ S∗
ϵ .

Lemma 2.6. [8] Let f ∈ A be of the form (1.1). If for some ϵ > 0 the inequality

∞∑
n=2

n(ϵ+ n− 1) |an| ≤ ϵ, (ϵ > 0) (2.5)

then f ∈ Cϵ.
Lemma 2.7. ([23]) For all γ, α, δ ≥ 0, and β > 0, we have

1.
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ(α(n+ 1) + β)

1

(n+ 1)!
= Wγ, δ

α, β(1)− 1;

2.
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ(α(n+ 1) + β)

1

(n)!
=

(
Wγ, δ

α,β

)′
(1)−Wγ, δ

α, β(1);

3.
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ(α(n+ 1) + β)

1

(n− 1)!
=

(
Wγ, δ

α, β

)′′
(1)−2

(
Wγ, δ

α, β

)′
(1)+2W γ, δ

α, β(1);

4.
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ(α(n+ 1) + β)

1

(n− 2)!
=

(
Wγ, δ

α, β

)′′′
(1)− 3

(
Wγ,δ

α,β

)′′
(1)

+ 6
(
Wγ, δ

α, β

)′
(1)− 6Wγ, δ

α, β(1)

3. Main Results

In our first result we obtain a sufficient condition for Wγ,δ
α,β(z) belong to the

class k − ST .

Theorem 3.1. Let γ, δ, α ≥ 0 and β > 0, if for some k(0 ≤ k < ∞) the inequality

(k + 1)
(
Wγ,δ

α,β

)′
(1)− kWγ,δ

α,β(1) ≤ 2 (3.1)

is satisfied then Wγ,δ
α,β(z) ∈ k − ST .

Proof. To prove Wγ,δ
α,β(z) ∈ k − ST , from Lemma 2.2 it is sufficient to prove that

∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
≤ 1.
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Now

∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

=

∞∑
n=2

{(k + 1)(n− 1) + 1}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

= (k + 1)
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!
+

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

= (k + 1)
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!
+

∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!

= (k + 1)

{(
Wγ, δ

α,β

)′
(1)−Wγ, δ

α, β(1)

}
+Wγ, δ

α, β(1)− 1

= (k + 1)
(
Wγ, δ

α,β

)′
(1)− kWγ, δ

α, β(1)− 1

≤ 1, (by given hypothesis).

This complete the proof of Theorem 3.1.

Theorem 3.2. Let γ, δ, α ≥ 0 and β > 0, if for some k(0 ≤ k < ∞) the inequality

(k + 1)
(
Wγ,δ

α,β

)′′
(1) +

(
Wγ,δ

α,β

)′
(1) ≤ 2 (3.2)

is satisfied then Wγ,δ
α,β(z) ∈ k − UCV .

Proof. The proof of above theorem is much akin to the proof of Theorem 3.1.
Therefore we omit the details involved.

Theorem 3.3. Let γ, δ, α ≥ 0 and β > 0, if for some k(0 ≤ k < ∞) the inequality

(k + 1)
(
Wγ,δ

α,β

)′′
(1) ≤ 1

k + 2
(3.3)

is satisfied then Wγ,δ
α,β(z) ∈ k − UCV .

Proof. To prove Wγ,δ
α,β(z) ∈ k − UCV , from Lemma 2.4 it is sufficient to prove

that
∞∑
n=2

n(n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
≤ 1

k + 2
.
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Now

∞∑
n=2

n(n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

=
∞∑
n=2

{(n− 1)(n− 2) + 2(n− 1)}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

=
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 3)!
+ 2

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!

=
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n− 1)!
+ 2

∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!

=

{(
Wγ, δ

α,β

)′′
(1)− 2

(
Wγ, δ

α,β

)′
(1) + 2Wγ, δ

α, β(1)

}
+ 2

(
Wγ, δ

α,β

)′
(1)− 2Wγ, δ

α, β(1)

=
(
Wγ, δ

α,β

)′′
(1)

≤ 1

k + 2
, (by given hypothesis).

This complete the proof of Theorem 3.3.

Theorem 3.4. Let γ, δ, α ≥ 0 and β > 0, if for some ϵ > 0 the inequality(
Wγ,δ

α,β

)′
(1) + (ϵ− 1)Wγ,δ

α,β(1) ≤ 2ϵ (3.4)

is satisfied then Wγ,δ
α,β(z) ∈ S∗

ϵ .

Proof. To prove Wγ,δ
α,β(z) ∈ S∗

ϵ , from Lemma 2.5 it is sufficient to prove that

∞∑
n=2

(ϵ+ n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
≤ ϵ.

Now

∞∑
n=2

(ϵ+ n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

=
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!
+ ϵ

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
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=
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!
+ ϵ

∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!

=
(
Wγ, δ

α,β

)′
(1)−Wγ, δ

α,β(1) + ϵ
(
Wγ, δ

α, β(1)− 1
)

≤ ϵ, (by given hypothesis).

This complete the proof of Theorem 3.4.

Theorem 3.5. Let γ, δ, α ≥ 0 and β > 0, if for some ϵ > 0 the inequality(
Wγ,δ

α,β

)′′
(1) + ϵ

{(
Wγ,δ

α,β

)′
(1)−Wγ, δ

α, β(1)

}
≤ ϵ (3.5)

is satisfied then Wγ,δ
α,β(z) ∈ Cϵ.

Proof. The proof of above theorem is much similar to the proof of Theorem 3.4.
Therefore we omit the details involved.

4. Inclusion Relations

Lemma 4.1. ([23]) For all α ≥ 0 and β > α, γ, δ > 1, we have

∞∑
n=0

(γ)n
(δ)n

Γ(β)

Γ(αn+ β)

1

(n+ 1)!
=

(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

[
Wγ−1, δ−1

α, β−α (1)− 1
]
.

Theorem 4.2. Let α ≥ 0, γ, δ > 1, β > α, f ∈ Rτ (A,B) and if the condition

(A−B)|τ |
[
(k + 1)

(
Wγ,δ

α,β(1)− 1
)
− k

{(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)
− 1

}]
≤ 1

(4.1)

is satisfied then I(γ, δ, α, β)f(z) ∈ k − ST .
Proof. To prove that I(γ, δ, α, β)f(z) ∈ k− ST from Lemma 2.2 it is sufficient to
prove that

∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ 1.

Since f ∈ Rτ (A,B), then from Lemma 2.1 we have

|an| ≤
(A−B)|τ |

n
.
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Now
∞∑

n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ (A−B)|τ |

[ ∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

]

= (A−B)|τ |

[
(k + 1)

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

−k

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

]

= (A−B)|τ |

[
(k + 1)

∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!
− k

∞∑
n=1

(γ)n
(δ)n

Γ(β)

Γ (αn+ β)

1

(n+ 1)!

]

= (A−B)|τ |
[
(k + 1)

(
Wγ,δ

α,β(1)− 1
)
− k

{(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)
− 1

}]
≤ 1, (by given hypothesis).

Thus the proof of Theorem 4.2 is established.

Theorem 4.3. Let γ, δ, α ≥ 0, β > 0, f ∈ Rτ (A,B) and if for some k(0 ≤ k < ∞)
the inequality

(A−B)|τ |
[
(k + 1)

(
Wγ,δ

α,β

)′
(1)− kWγ,δ

α,β(1)− 1

]
≤ 1 (4.2)

is satisfied then I(γ, δ, α, β)f(z) ∈ k − UCV .
Proof. To prove that I(γ, δ, α, β)f(z) ∈ k − UCV from Lemma 2.3 it is sufficient
to prove that

∞∑
n=2

n {(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ 1.

Since f ∈ Rτ (A,B), then from Lemma 2.1, we have

|an| ≤
(A−B)|τ |

n
.

Now
∞∑
n=2

n {(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ (A−B)|τ |

[
∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

]
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≤ (A−B)|τ |

[
∞∑
n=2

{(k + 1)(n− 1) + 1}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

]

= (A−B)|τ |

[
(k + 1)

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!

+
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

]

= (A−B)|τ |

[
(k + 1)

∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!

+
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!

]

= (A−B)|τ |
[
(k + 1)

{(
Wγ,δ

α,β

)′
(1)−Wγ,δ

α,β(1)

}
+Wγ,δ

α,β(1)− 1
]

≤ 1, (by given hypothesis).

Thus the proof of Theorem 4.3 is established.

Theorem 4.4. Let γ, δ, α ≥ 0, β > 0, f ∈ Rτ (A,B) and if for some k(0 ≤ k < ∞)
the inequality

(A−B)|τ |
[(

Wγ,δ
α,β

)′
(1)−Wγ,δ

α,β(1)

]
≤ 1

k + 2
(4.3)

is satisfied then I(γ, δ, α, β)f(z) ∈ k − UCV .
Proof. To prove that I(γ, δ, α, β)f(z) ∈ k − UCV from Lemma 2.4 it is sufficient
to prove that

∞∑
n=2

n(n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ 1

k + 2
.

Since f ∈ Rτ (A,B), then from Lemma 2.1, we have

|an| ≤
(A−B)|τ |

n
.
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Now
∞∑
n=2

n(n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ (A−B)|τ |
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!

= (A−B)|τ |
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!

= (A−B)|τ |
[(

Wγ,δ
α,β

)′
(1)−Wγ,δ

α,β(1)

]
≤ 1

k + 2
, (by given hypothesis).

Thus the proof of Theorem 4.4 is established.

Theorem 4.5. Let γ, δ, α ≥ 0, β > 0, f ∈ Rτ (A,B) and for some ϵ > 0 the
inequality

(A−B)|τ |
[(

Wγ,δ
α,β

)′
(1) + (ϵ− 1)Wγ,δ

α,β(1)− ϵ

]
≤ ϵ (4.4)

is satisfied then I(γ, δ, α, β)f(z) ∈ Cϵ.
Proof. To prove that I(γ, δ, α, β)f(z) ∈ Cϵ from Lemma 2.6 it is sufficient to prove
that

∞∑
n=2

n(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ ϵ.

Since f ∈ Rτ (A,B), then from Lemma 2.1, we have

|an| ≤
(A−B)|τ |

n
.

Now
∞∑
n=2

n(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ (A−B)|τ |

[
∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!

]

= (A−B)|τ |

[
ϵ

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!



An Application of Generalized Wright Function ... 229

+
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!

]

= (A−B)|τ |

[
ϵ

∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!

+
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!

]

= (A−B)|τ |
[
ϵ
(
Wγ,δ

α,β(1)− 1
)
+

{(
Wγ,δ

α,β

)′
(1)−Wγ,δ

α,β(1)

}]
≤ ϵ, (by given hypothesis).

Thus the proof of Theorem 4.5 is established.

Theorem 4.6. Let γ, δ > 1, α ≥ 0, β > α, f ∈ Rτ (A,B) and if for some ϵ > 0
the inequality

(A−B)|τ |
[
Wγ,δ

α,β(1)− 1 + (ϵ− 1)

{(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)
− 1

}]
≤ ϵ

(4.5)

is satisfied then I(γ, δ, α, β)f(z) ∈ S∗
ϵ .

Proof. To prove that I(γ, δ, α, β)f(z) ∈ S∗
ϵ from Lemma 2.5 it is sufficient to

prove that
∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ ϵ.

Since f ∈ Rτ (A,B), then from Lemma 2.1, we have

|an| ≤
(A−B)|τ |

n
.

Now

∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

an
(n− 1)!

≤ (A−B)|τ |

[
∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

]

= (A−B)|τ |

[
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
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+(ϵ− 1)
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

]

= (A−B)|τ |

[ ∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!

+(ϵ− 1)
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 2)!

]

= (A−B)|τ |
[
Wγ,δ

α,β(1)− 1 + (ϵ− 1)

{(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)
− 1

}]
≤ ϵ, (by given hypothesis).

Thus the proof of Theorem 4.6 is established.

5. Integral operator
In this section we introduce a generalized integral operator associated with

normalized generalized Wright function in the following way

Ωγ,δ
α,β(z) =

∫ z

0

Wγ,δ
α,β(t)

t
dt.

= z +
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

zn

n!
. (5.1)

Theorem 5.1. Let γ, δ, α ≥ 0 and β > 0, if for some k(0 ≤ k < ∞) the inequality
(3.1) is satisfied then Ωγ,δ

α,β(z) ∈ k − UCV .

Proof. To prove Ωγ,δ
α,β(z) ∈ k−UCV from Lemma 2.3 it is sufficient to prove that

∞∑
n=2

n {(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!
≤ 1.

Now

∞∑
n=2

n {(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

=
∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
.

Now, applying the same reasoning as applied in Theorem 3.1, we obtain the required
result.
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Theorem 5.2. Let α ≥ 0, γ, δ > 1, β > α. If for some k(0 ≤ k < ∞), the
inequality

(k + 1)Wγ,δ
α,β(1)− k

[(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)]

≤ 2 (5.2)

is satisfied then Ωγ,δ
α,β(z) ∈ k − ST .

Proof. To prove that Ωγ,δ
α,β(z) ∈ k − ST from Lemma 2.2 it is sufficient to prove

that
∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!
≤ 1.

Now

∞∑
n=2

{(k + 1)n− k}
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

= (k + 1)
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
− k

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

= (k + 1)
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!
− k

∞∑
n=0

(γ)n
(δ)n

Γ(β)

Γ (αn+ β)

1

(n+ 1)!

= (k + 1)
(
Wγ,δ

α,β(1)− 1
)
− k

[(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)
− 1

]
≤ 1, (by given hypothesis).

Thus the proof of Theorem 5.2 is established.

Theorem 5.3. Let α, γ, δ ≥ 0, β > 0. If for some k(0 ≤ k < ∞), the inequality(
Wγ,δ

α,β

)′
(1)−Wγ,δ

α,β(1) ≤
1

k + 2
(5.3)

is satisfied then Ωγ,δ
α,β(z) ∈ k − UCV .

Proof. To prove that Ωγ,δ
α,β(z) ∈ k−UCV from Lemma 2.4 it is sufficient to prove

that
∞∑
n=2

n(n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!
≤ 1

k + 2
.
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Now

∞∑
n=2

n(n− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

=
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 2)!

=
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

n!

=
(
Wγ,δ

α,β

)′
(1)−Wγ,δ

α,β(1)

≤ 1

k + 2
, (by given hypothesis).

Thus the proof of Theorem 5.3 is established.

Theorem 5.4. Let α ≥ 0, γ, δ > 1, β > α. If for some ϵ > 0, the inequality

Wγ,δ
α,β(1) + (ϵ− 1)

[(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)]

≤ 2ϵ (5.4)

is satisfied then Ωγ,δ
α,β(z) ∈ S∗

ϵ .

Proof. To prove that Ωγ,δ
α,β(z) ∈ S∗

ϵ from Lemma ?? it is sufficient to prove that

∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!
≤ ϵ.

Now

∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

=
∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
+ (ϵ− 1)

∞∑
n=2

(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

=
∞∑
n=0

(γ)n+1

(δ)n+1

Γ(β)

Γ (α(n+ 1) + β)

1

(n+ 1)!
+ (ϵ− 1)

∞∑
n=1

(γ)n
(δ)n

Γ(β)

Γ (αn+ β)

1

(n+ 1)!

= Wγ,δ
α,β(1)− 1 + (ϵ− 1)

[(
δ − 1

γ − 1

)
Γ(β)

Γ(β − α)

(
Wγ−1,δ−1

α,β−α (1)− 1
)
− 1

]
≤ 2ϵ, (by given hypothesis).
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Thus the proof of Theorem 5.4 is established.

Theorem 5.5. Let γ, δ, α ≥ 0 and β > 0, if for some ϵ > 0 the inequality (3.4) is
satisfied then Ωγ,δ

α,β(z) ∈ Cϵ.
Proof. To prove that Ωγ,δ

α,β(z) ∈ Cϵ from Lemma 2.6 it is sufficient to prove that

∞∑
n=2

n(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!
≤ ϵ.

Now

∞∑
n=2

n(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

n!

∞∑
n=2

(n+ ϵ− 1)
(γ)n−1

(δ)n−1

Γ(β)

Γ (α(n− 1) + β)

1

(n− 1)!
.

Now, applying the same technique adopted in Theorem 3.4 we obtain the required
results.
Thus the proof of Theorem 5.5 is established.

6. Conclusion
In the present investigation, we have studied the sufficient conditions of normal-

ized Wright function belonging to the families of k− starlike functions, k−uniformly
convex functions, S∗

ϵ and Cϵ. In fact these subclasses are the generalization of vari-
ous well-known subclasses of univalent functions and hence have a great importance
in the theory of univalent functions. We also determine sufficient conditions for
inclusion relations between these subclasses. The integral operator associated with
normalized generalized Wright function are also introduced and we determine some
sufficient conditions for this integral operator belonging to these subclasses. We
hope that our results establishes a link between univalent function theory with
special functions and motivates to researchers for obtaining new results for other
special functions in future.
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